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Abstract:  Model-Based Processing is essentially a way of incorporating physics into 

the processing scheme in a self-consistent manner. This work presents some of the techniques 
that have been applied to acoustic array problems. Three situations are addressed. The first 
is the bearing estimation problem. It is shown that if the forward motion of a towed array is 
incorporated into the signal model, the performance, as measured by the variance of the 
estimate, is significantly improved. The second problem treated is that of range estimation. 
Here it is shown that, by modeling the signal as a cylindrical wavefront, and including the 
forward motion of the array, the range of an acoustic source can be estimated with an array 
whose physical aperture is short as compared to the range of the source. The third problem 
addressed is that of model-based localization of a source using a fixed vertical array. In this 
case, the signal is represented  by a normal-mode propagation model. This differs from 
matched field processing in that it includes the propagation model parameters themselves in 
the scheme, thereby dealing with the so-called “mismatch” problem, i.e., the problem that 
arises when the model parameters are not well-known. It also differs from the matched-field 
approach in that it does not require an exhaustive search over the parameters of interest to 
obtain a solution. The performance improvements that Model-Based Processing is capable of 
are demonstrated using experimental results. 
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1. INTRODUCTION 

Model-Based processing refers to the practice of including the physics of the situation in 
the processing scheme for the purpose of improving performance. An early example is the 
case of source localization in the ocean, commonly referred to as “Matched-Field Processing” 
or MFP [1, 2]. It is a localization scheme that incorporates a propagation model into the 
processor, thereby improving the observability [3] of the parameters of interest. In this paper 
it is shown, for three cases, how this philosophy can improve performance over conventional 
approaches.  

The first case is that of bearing estimation with a line array. By explicitly including 
the forward motion of the array in the processor, the variance on the bearing estimate is 
significantly reduced. This is referred to as the “Synthetic Aperture Effect,” since the 
improvement can be heuristically viewed as exploiting the aperture traced out by the moving 
array. In fact, the improvement arises from the fact that the model-based approach allows the 
bearing information contained in the Doppler shift of the received data to be exploited.  

The second case is the estimation of range by “Wavefront-Curvature Ranging.” In this 
case, along with the array motion, the fact that the signal wavefront is curved is explicitly 
built into the processor. This then permits the radius of curvature of the wave to be estimated, 
where the radius is then identified as the range of the source. 

The third case is the localization of an acoustic source in an oceanic waveguide. Here, 
the Normal-Mode Model [4] of propagation is used to localize a narrow-band source in the 
ocean. In this example, the modes and the modal coefficients are jointly estimated along with 
the source coordinates, thereby eliminating the so-called “mismatch problem” [5] that 
plagues matched-field processing. 

All of these examples are based on a recursive Kalman-type estimation scheme, since 
this formalism allows the physical models to be incorporated in a natural manner [3]. Results 
using experimental data are presented for all three cases. 

2. BEARING ESTIMATION 

Consider an acoustic line array of N equally-spaced hydrophones on the x-axis of an x-y 
coordinate system to be moving in the +x direction. Further, assume that a plane wave, 
emanating from a far-field source with a frequency of 0ω  is impinging on the array at a 
bearing angle of θ  measured from broadside, i.e., the y-axis. The signal on the  thn
hydrophone is then given by 

tivtndikaep 0sin)( ωθ ++−=n . (1)

Here, ck /0ω= , is the wavenumber, with c being the speed of sound, v is the speed of the 
array along the x-axis, t is time and d is the spacing of the hydrophone receivers. If we now 
define a state vector as  
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with T signifying the transpose, and consider Equation 1 as a measurement vector element, 
then a predictor-corrector form of a Kalman filter [3] can be identified, with Equation 2 as the 
state equation and a measurement equation given by 
 

 

The measurement equations are nonlinear functions of the states, so that the extended Kalman 
filter or EKF must be used [3]. An experiment was carried out in the Baltic by FOI using a 
narrowband source at a depth of about 40 meters. The array was towed past at a nominal 
range of 500 meters. The bearing was estimated using the system described by Equations 2 
and 3 [6] and the results are depicted in Fig 1. The signal-to-noise ratio (SNR) at the 
hydrophone level is approximately 0 dB and the frequency is 121 Hz. The bottom curve is the 
bearing estimate by the full 6 wavelength aperture of the array using a conventional 
beamformer. The dots are the results using the same beamformer, but using only two 
wavelengths of aperture. The solid lines at the top are the results using the model-based 
bearing estimator using the two wavelength segment.  

 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.1: Towed array bearing estimation results. The horizontal axis is time in seconds and 
the vertical axis is the bearing in degrees. The nominal bearing is broadside to the array and 
the tow speed is 4 kts. 

 

TaX ][ ωθ= 0 ,          (2) 

TpppaY ][),,( =ωθ N210 .          (3) 
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The success of this experiment motivated the development of a broadband version of such 
an estimation scheme. In principal, this could be done by a parallel set of narrowband 
procedures as described above, but this would require a prohibitive amount of computational 
time. Instead, a broadband processor was developed based on a frequency domain 
representation and is described in Reference 7. This has not been evaluated yet with actual at-
sea data, but we show results for simulated broadband data in Fig. 2. The SNR is -15 dB and 
the mean acoustic aperture is one wavelength for a frequency band of 100-400 Hz.  

 

 
Fig. 2: Broadband bearing estimation results. The 5 element  array was moving with a 

speed of 10 meters/second. The bearing was initialized at 24 degrees and the frequency was 
initialized at 99 Hz, where the source fundamental frequency was 100 Hz. The dotted lines 

indicate the true values. 

3. WAVEFRONT CURVATURE RANGING 

If, instead of a plane wave, suppose that a circular wavefront is arriving at the array at 
bearing angle θ . For the two-dimensional case, the time delay of the wave with respect to the 

thn  element is found, with the help of the law of cosines, to be 

 

ere,H  R  is the range to the origin of the x-y coordinate system and is the range to the nR thn  
element. The measurement at the thn  element is then 

 

Defining the state equation as 

( ) ( )[ ]( )2/12 sin/}{2/}{11/)(),( θθτ RvtxRvtxRcRRR nnn +−++−=−= .          (4) 
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and the measurement equation as 

the state vector and therefore the range and bearing can be jointly estimated. An example of 
range only estimation is shown in Fig 3. This result is based on the same data as used for the 
plane wave results shown in Fig. 1. 

 
 

Fig. 3: Narrowband rang estimation results. The 3 element  array was moving at a speed 
of 4 kts. The range, which is indicated on the vertical axis, was initialized 1000 meters.  

4. SOURCE LOCALIZATION 

In the Matched–Field approach to source localization, unless the model parameters are 
known to a sufficient degree of accuracy, the estimation process fails [5]. MFP is carried out 
by using the model to predict the measurements on the array for an exhaustive set of source 
coordinates. These predictions are then compared or “matched” to the measurements, and the 
source coordinates associated with the best match are deemed to be the estimated position. 
By formulating the localization problem as a Kalman-based recursive estimator, the 

TRaX ][ 0ωθ= ,          (6) 
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mismatch problem can be dealt with by including the troublesome model parameters as 
additional unknown parameters, i.e., by “augmenting” them into the state vector [8,9].  

In this example, the measurement equation is based on the normal-mode propagation 
model. Thus, 

∑∑
==

==
M

m
nmssmnmsms

m
mssn zzrzzrkHzrp

1
1,,1,1,

1
0, )()()()()()( φβφφ . 

M

Here, np  is the pressure measurement on the thn  hydrophone of the vertical array, sr  an s  d z

(8)

are the respective source range and depth, z  is the depth of the thn  hydrophone,  is th  n mk e 
horizontal wavenumber for the thm  mode and )(1, zm φ is the thm  modal function evaluated at 
the depth z. The state equation evolves from the so-called vertical equation, i.e., e total th
differential equation for the modal functions resulting from the separation of variables 
procedure on the wave equation.  write this e n expli y as  We quatio citl
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By defining the two-dimensional state-space T
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subsystem (state-space) for the thm  mode evolves as 

where )()( zz1, mm φφ =  and )()( zdz φ= . For M modes, the state vector is 1,2, dz mmφ 12 ×M  

dimensional and the full state equation is then 

The source parameters are now found as follows. Identifying Equation 8 as the measurement 
equation, a state equation is written based on an augmented state vector defined as 
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By approximating the differential equation in Equation 12 using discrete first differences, the 
state vector is sequenced along the measurement array using 
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Unlike usual sequential processing schemes, where the sequencing takes place over time 
samples, here the sequence is over the spatial samples provided by the vertical line array. 
Thus, the measurement equation is a scalar- -- a great computational savings!  

Having the state vector estimate, and the propagator of Equation 13, the source 
coordinates are then found by a nonlinear least squares estimate. That is, the squared error J 
is minimized using the polytope method [10], where 

The results for a case of at sea data are shown in Fig. 4 . The data for this example is fro e m th
Hudson Canyon experiment [11]. 
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Fig. 4: Narrowband localization results. The 50 Hz source was located at a depth of 36 
meters and a range of 0.5 km from the fixed vertical array. The element spacing was 2.5 
meters. 

5. SUMMARY 

  The results in all three cases make clear that the inclusion of the models provides 
significant improvement in performance. In the first case, that of bearing estimation, the 
performance of the model-based processor clearly provides a much smaller bearing 
estimation error when compared with the conventional beamformer. In the case of wavefront 
curvature, although here there is no direct comparison to any other method, we note that the 
results are based on a SNR of 0 dB and a range-to-aperture ratio of 19.5. Furthermore, this 
solution required only 3 seconds to converge. The localization case also is not directly 
compared to any other case in a quantitative manner, but we note two points. First, the 
solution is highly accurate. Second, unlike the matched-field approach, an exhaustive search 
over the parameter space was not necessary. 
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